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ABSTRACT

Evidence in the literature indicates that the stiffness of the asphalt binder increases and
ductility of the binder decreases with oxidative aging. Typically for unmodified asphalt
binders, increase in stiffness or decrease in ductility is regarded as detrimental to the fa-
tigue cracking or fracture resistance of the asphalt binder. However, fundamentally the
stiffness of the binder and its strength are two different attributes that may not necessar-
ily be related to each other. There is very little information in the literature that relates
the fatigue cracking resistance or strength of the asphalt binder to the extent of oxidative
aging. This information is not only important to assess the durability and cracking life of
asphalt pavements but is also very important in the context of reclaimed asphalt pavements
(RAP). The use of RAP not only reduces the waste produced from milling and removing
the asphalt pavement layers at the end of their service life, but also reduces the amount of
asphalt required for the construction of new roadways. In an effort to improve sustainable
practices associated with pavement constructions, state DOTs have been gradually increas-
ing the allowable percentage of RAP in new asphalt mixtures over the last two decades.
However, the asphalt binder in RAP is highly oxidized and is deemed to be susceptible to
load related fatigue cracking. The focus of this study was to investigate the effect of asphalt
binder oxidation on its fracture properties and fatigue cracking performance. To this end,
fatigue cracking resistance of an asphalt binder was measured at different levels of aging
using an standardized glass bead composite. The glass bead composite simulates the stress
state that asphalt binders experience in the field, while it excludes aggregate-asphalt binder
interactions. Furthermore, this research also investigated the effect of aging on fracture
properties of an asphalt binder by conducting monotonic fracture tests using a poker chip
test geometry. The findings from this study provide a better understanding of the effect of
aging on the fracture and fatigue properties of asphaltic materials.
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EXECUTIVE SUMMARY

Over the last two decades, the use of reclaimed asphalt pavements (RAP) as a con-
struction material has significantly increased. This increase in the use of RAP materials is
aligned with the concept of sustainable transportation infrastructure and is also motivated
by the cost savings that are realized by incorporating RAP in new asphalt mixtures. Despite
all the benefits associated with the use of RAP, the inclusion of higher percentages of RAP
in a fresh asphalt mixture results in increased mixture stiffness. This increased stiffness is
considered to result in an increased susceptibility to fatigue and low-temperature cracking.
The objective of this study was to investigate the former, i.e. whether or not aged asphalt
binders have poor fracture or fatigue cracking resistance when subjected to similar external
loading conditions at intermediate temperatures.

In order to achieve the overall goal of this study, fatigue cracking and fracture resis-
tance of a selected asphalt binder were measured at different levels of aging. To age as-
phalt binders in the laboratory at different levels, two different aging devices were used:
the rolling thin film oven (RTFO), and pressure aging vessel (PAV). The RTFO simulates
the short-term aging due to construction (production and placement), and the PAV simu-
lates the long-term aging due to construction and service. Furthermore, to simulate the
extended aging, the PAV-aged asphalt binder was further aged using the PAV for a second
and third time. Finally to simulate the binder in a HMA containing RAP, the RTFO-aged
binder was mixed with the double PAV-aged binder in two different proportions that rep-
resent the typical percentage of RAP use. Fatigue cracking resistance was measured using
a standardized glass bead composite. The glass bead composite simulates the stress state
that asphalt binders experience in the field, while it excludes aggregate-asphalt binder in-
teractions. After aging the binder and fabricating the standardized glass bead composites,
the mechanical (undamaged and fatigue) properties of the asphalt binder were measured.
These measurements included the mechanical properties of asphalt binder at different lev-
els of aging and also glass-bead mixtures with different percentage of RAP. Continuum
damage mechanics was used to analyze the results from the fatigue tests. Fracture proper-
ties of the asphalt binder at different levels of aging or RAP content were measured using
a poker chip geometry.

The results from this study show that aging causes the asphalt binder and concomitant
composite to become more stiff and relatively less time dependent. This finding was ex-
pected based on the current understanding of the binder behavior after aging. However, it
was also observed that the viscous component of the complex shear modulus of the binder
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(in the standardized composite), reflected by the parameter G∗Sinδ , did not change signifi-
cantly with aging. The results from fatigue test using the standardized glass bead composite
subjected to stress controlled cyclic load, clearly demonstrated that the fatigue cracking re-
sistance of asphalt binder increased with aging. The results from thin film fracture test
illustrate that both maximum tensile stress and fracture energy increase until some level of
aging. The results also demonstrate that the mechanical properties and performance of the
mix containing RAP reflect a composite effect of its components. In summary, the findings
from this work suggest that although aged binder and concomitant RAP mixes may have
higher stiffness due to aging, these materials also tend to show an increased fracture and
fatigue cracking resistance. Consequently, both of these factors must be considered in order
to fully optimize mix designs containing RAP and maximize the use of these materials.
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CHAPTER 1. INTRODUCTION

1.1 PROJECT BACKGROUND

Aging of asphalt binders is known to influence the properties of the asphalt mixtures during
the construction and subsequent service life of the pavement. Changes in material prop-
erties due to aging are also regarded as one of the main causes of pavement deterioration.
There is significant evidence in the literature that indicates that oxidative aging increases
the stiffness of the asphalt binder and decreases the ductility of the binder. Typically for
unmodified asphalt binders an increase in stiffness or decrease in ductility is regarded as
detrimental to the fatigue cracking or fracture resistance of the asphalt binder. However,
fundamentally the stiffness of the binder and its strength are two different attributes that
may not necessarily be related to each other. There is very little information in the lit-
erature that relates the fatigue cracking resistance or strength of the asphalt binder to the
extent of oxidative aging. This information is not only important to assess the durability
and cracking life of asphalt pavements but is also very important in the context of reclaimed
asphalt pavements (RAP).

Over the last two decades, the use of reclaimed asphalt pavements (RAP) as a con-
struction material has significantly increased. This increase in the use of RAP materials is
aligned with the concept of sustainable transportation infrastructure and is also motivated
by the cost savings that are realized by incorporating RAP in new asphalt mixtures. The
use of RAP not only reduces the waste produced from milling and removing asphalt pave-
ment layers at the end of their service life, but also reduces the amount of asphalt required
during the construction of new roadways. Therefore, RAP technology is an important el-
ement in building and maintaining environment friendly roadways. In an effort to reduce
costs and improve sustainable practices associated with pavement construction, state DOTs
have been gradually increasing the allowable percentage of RAP in new asphalt mixtures.
Despite all the benefits associated with the use of RAP, there are some questions related
to the long-term durability of asphalt mixtures containing large percentages of RAP. As-
phalt mixtures and pavements rely on the inherent ability of the asphalt binder to relax
internal stresses that build up at low temperatures, thus preventing formation of transverse
cracks. The ductile behavior of asphalt binder is also important to prevent nucleation and
rapid propagation of fatigue cracks when subjected to cyclic loading due to traffic. The
asphalt binder in RAP is highly oxidized and has a reduced ability to relax compared to
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fresh asphalt binder. While the reduced ability of the binder to relax translates into higher
stress accumulation (particularly as the pavement temperature drops) it does not necessarily
translate into increased susceptibility of the binder to crack or fail. In particular, cracking
in the binder is governed by not just the stresses experienced by the material but also by the
tensile strength of the material to resist such stresses. Traditionally, a lot of attention has
been paid in the binder industry to evaluate the stiffness and stresses that are developed in
aged and unaged binder but such information is only of value when juxtaposed against the
changes in the strength of the material.

1.2 OBJECTIVES

The main objective of this study is to evaluate the effect of aging on the fatigue cracking
resistance of asphalt binders at an intermediate temperature. In this study, we will use a
standardized glass bead composite to measure the fatigue properties of an asphalt binder at
different levels of aging. The glass bead composite simulates the stress state that asphalt
binders experience within HMA, while it excludes aggregate-asphalt binder interactions.
Note that the aggregate-asphalt interactions are excluded by design not because such inter-
actions are not important in the real world but rather to facilitate a systematic study of the
asphalt binder in isolation. To age asphalt binders in the laboratory at different levels, two
different aging devices were used: the rolling thin film oven (RTFO), and pressure aging
vessel (PAV). The RTFO simulates the short-term aging due to construction (production
and placement), and the PAV simulates the long-term aging due to construction and ser-
vice. Furthermore, to simulate the extended aging, the PAV-aged asphalt binder was further
aged using the PAV for a second and third time. Finally to simulate the binder in a HMA
containing RAP, the RTFO-aged binder was mixed with the double PAV-aged binder in
two different proportions that represent the typical percentage of RAP use. After aging the
binder and fabricating the standardized glass bead composites, the mechanical (undamaged
and fatigue) properties of the asphalt binder were measured. These measurements included
the mechanical properties of asphalt binder at different levels of aging and also glass-bead
mixtures with different percentage of RAP. Continuum damage mechanics was used to an-
alyze the results from the fatigue tests. The second objective of this study was to measure
the fracture properties of the asphalt binder at different levels of aging or RAP content. The
poker chip geometry was used to measure the fracture properties of the aged asphalt binder
at an intermediate temperature. The findings from this study provide a better understanding
of the long term performance of aged binders as in the case of RAP.
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1.3 REPORT STRUCTURE

Chapter 2 of this report presents a background on the need for improving our understand-
ing of aging and its effect on the fatigue properties of asphaltic materials. This chapter also
reviews the test methods that are available to characterize the fatigue and fracture prop-
erties of asphalt binders with an emphasis on viscoelastic continuum damage. Chapter 3
presents a description of the materials that were selected and used in this study along with
a detailed description of the procedures that were used to fabricate the test specimens. This
is followed by a description of the various test methods that were used in this study and
a detailed analysis of the test results in Chapter 4. Finally, Chapter 5 presents concluding
remarks based on the findings from this study.
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CHAPTER 2. BACKGROUND AND RESEARCH APPROACH

Oxidative aging can significantly change the behavior of asphalt binders and composites
over time. It is well established in the literature that aging influences the properties of an
asphalt binder and consequently that of the asphalt mixture during construction and over
the service life of the pavement. For example, several research studies have demonstrated
that the stiffness of the asphalt binder increases and ductility of the binder decreases with
oxidative aging. Typically for unmodified asphalt binders an increase in stiffness or de-
crease in ductility is regarded as detrimental to the fatigue cracking or fracture resistance
of the asphalt binder. However, fundamentally the stiffness of the binder and its strength
are two different attributes that may not necessarily be related to each other. As mentioned
earlier, there is very little information in the literature that relates the fatigue cracking re-
sistance or strength of the asphalt binder to the extent of oxidative aging. This information
is not only important to assess the durability and cracking life of asphalt pavements but
is also very important in the context of recycled asphalt pavements (RAP). This chapter
briefly reviews the importance knowing the effect of aging or use aged materials in the
performance of asphaltic materials. Furthermore, the approaches to measure the fatigue
and fracture of asphaltic materials will be reviewed with the intention of selecting the most
promising approaches.

2.1 USE OF RECLAIMED ASPHALT IN NEW PAVEMENT CONSTRUCTION

Reclaimed asphalt pavement (RAP) refers to asphalt material that is typically recovered
from milled asphalt pavements at the end of their service life. In general, the techniques for
recycling asphalt pavement can be categorized in five groups (Decker, 1997): cold plan-
ning, hot recycling, hot in-place recycling, cold in-place recycling, and full depth reclama-
tion. The focus of this study is hot recycling, since it is more commonly used in the United
States. Hot recycling mixes RAP with virgin asphalt binder and aggregate to produce a new
hot mix asphalt (HMA). In practice, either a drum or batch type hot mix plant can be used
to produce a HMA with RAP, although the former is more common. A HMA incorporating
RAP is placed and compacted in a manner that is similar to virgin HMA. The use of RAP
in fresh HMA:

• reduces the waste produced from milling and removing asphalt pavement layers at
the end of their service life,
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• reduces the amount of asphalt binder required during construction, and

• reduces the construction costs related to the asphalt binder and aggregate.

Due to the above economic and environmental advantages, the use of RAP in HMA
has been growing steadily over the last several years. During the last two decades, several
research studies have been conducted to better understand the effect of aging or the effect
of RAP on the mechanical properties of the HMA. These research studies demonstrate that
the asphalt binder associated with the RAP material is heavily aged and hardened mainly
due to six major mechanisms (Roberts et al., 1996; Tyrion, 2000; Karlsson and Isacsson,
2006):

• oxidation,

• volatilization,

• polymerization,

• thixotropy,

• syneresis, and

• separation.

Therefore, producing mixtures using RAP will result in stiffer and less viscous pave-
ments, compared to the pavements made using virgin HMA. Although the change in HMA
properties due to aging improves the early-age performance of HMA such as rutting re-
sistance, but it is also widely believed that this might make pavements more prone to the
fatigue cracking. Thus, despite all the benefits associated with the use of RAP, there are
some questions related to the long-term durability of asphalt mixtures containing higher
percentages of RAP. In general, the ductile behavior of asphalt binder is important to pre-
vent nucleation and rapid propagation of fatigue cracks when subjected to cyclic loading
due to traffic. Since the asphalt binder in RAP is highly oxidized and does not have the
ability to relax, the fatigue cracking and low temperature cracking resistance of asphalt
mixtures containing a high percentage of RAP are a concern. Strategies such as high tem-
peratures to better homogenize the old and recycled binder and the use of rejuvenators are
often employed to improve the performance of the asphalt mixture with RAP. However,
the efficacy of such strategies is dependent on the specific combination of materials used.
Therefore, there is a need to clearly quantify the effect of oxidation and the use of RAP on
crack nucleation and crack growth in asphalt composites.
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2.2 OVERVIEW OF FATIGUE AND FRACTURE OF ASPHALT BINDERS

It is well established that oxidative aging results in stiffer binder. However, in addition to
measuring stiffness and the ability to relax, the main goal of this study was to characterize
the fatigue and fracture resistance properties of the asphalt binder as a function of aging.
To this end, this section reviews some of the methods and metrics that are currently in use
or have been recently developed to characterize the fatigue and fracture resistance of an
asphalt binder.

According to the current PG specification (AASHTO M-320), a binder is deemed as
resistant to fatigue cracking at intermediate temperatures if the parameter G∗Sinδ of the
PAV aged binder is less than 5000 kPa (G∗ is the complex modulus and δ is the phase
angle). In this case, intermediate temperature is defined as 4Â◦C above the average of
the high and low temperatures. This parameter is measured using a DSR and by applying
a sinusoidal loading at the frequency of 10 radians/second. Just as in the case of high
temperature grade, this specification is based on neat asphalt binders. This specification
is based on the premise that a stiffer asphalt binder is more susceptible to fatigue and low
temperature cracking. This premise implicitly assumes that all asphalt binders have similar
tensile strength. In other words, a major drawback of this specification is that it is based
on the stiffness of the binder and not the strength of the binder. Fatigue cracking is the
incremental nucleation and growth of microcracks. It is important to accurately estimate
the strength of the asphalt binder in order to characterize its ability to resist fatigue cracking.

As a simplified analogy, consider two different binders with similar tensile strength. In
this case, when both binders are subjected to the similar tensile strains, the material with
higher stiffness would result in a higher stress to strength ratio. Consequently, the material
with the higher stiffness would be more prone to fatigue cracking. The rationale for using
the current specification criterion for asphalt binders is somewhat similar to this analogy.
However, the SHRP research was conducted on mostly unmodified asphalt binders. Over
the last two decades, asphalt binder producers have started producing asphalt binders using
chemical and physical modifiers (e.g., poly phosphoric acid and polymers). In addition,
users of the asphalt binders have increased the use of other modifiers such as liquid anti
strip agent for moisture resistance and waxes and surfactants to produce warm asphalt
mixtures. Several of these modifications are likely to change the strength properties of the
asphalt binder as well. Consequently, the linear elastic or viscoelastic properties of the
binder are unlikely to be an accurate reflection of the strength of the material.
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Bahia et al. (2010) reported a poor correlation between G∗Sinδ and fatigue cracking of
HMA pavements. Similar findings were reported by other researchers along with suggested
alternatives to replace the G∗Sinδ as a specification for resistance to fatigue crack growth
(Olard and Di Benedetto, 2004; Andriescu and Hesp, 2009). In a recent study, Arega et al.
(2011) measured G∗Sinδ for several different modified and unmodified binders including
binders that were modified using WMA additives. They compared G∗Sinδ to the tensile
strength of the asphalt binders and reported that there was very little correlation between
stiffness and tensile strength of the asphalt binders. Note that the tensile strength governs
the fatigue crack growth process although the relationship between the tensile strength
and fatigue crack growth may be influenced by modification process. In fact, in many
cases, tensile strength of the binder increased with an increase in stiffness suggesting an
improvement in the fatigue cracking resistance when subjected to similar stress conditions.
However, it is clear from the results that certain binders that had a low G∗Sinδ and easily
met the specification limit for G∗Sinδ < 5000 kPa also had a low tensile strength as well
and vice-versa.

Ongoing studies attempt to rectify the shortcomings of the G∗Sinδ by using other ap-
proaches to test the asphalt binder with a dynamic shear rheometer (DSR). Two approaches
in particular are the time sweep test and the amplitude sweep test. Anderson et al. (2001)
reported that the use of a DSR for a time sweep test on asphalt binder specimens with a par-
allel plate geometry may result in artifacts that may resemble fatigue failure. Subsequently,
Planche et al. (2004) reported that several artifacts that look like fatigue damage in the me-
chanical response can be corrected to obtain the true fatigue behavior of the asphalt binder.
Bahia and co-workers have proposed the linear amplitude sweep test (LAS) to measure the
fatigue cracking resistance of asphalt binders. This test requires that a sample of the binder
be subjected to sinusoidal loading in a DSR (similar to the current method). After a specific
number of cycles the applied stress amplitude is increased and the process is repeated until
the stress amplitude is high enough to cause damage in the specimen. Johnson (2010) con-
ducted the LAS test on materials from several LTPP test sections and compared the results
to the amount of cracking observed in the pavement. The results were promising despite
the fact that differences in strain levels due to differences in pavement structures would also
play a role in the overall cracking observed in the pavement sections. The subsequent sec-
tions present an overview of the recent methods that have been developed to characterize
the fatigue and fracture properties of asphalt binders.
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2.3 RECENTLY DEVELOPED METHODS

2.3.1 Linear amplitude sweep test

This test is typically conducted by applying a strain controlled cyclic load to a 1 mm thick
binder specimen, between parallel plates, using a DSR (Bahia et al., 2010). The applied
strain amplitude is linearly increased after every 100 cycles. The resulting shear stress is
recorded and analyzed to quantify the fatigue cracking potential. A creep-recovery test or
a frequency sweep test at low stress or strain amplitudes is also typically conducted prior
to the LAS in order to obtain the linear viscoelastic properties of the binder. The linear
viscoelastic properties are then used along with the data obtained from the LAS to compute
the damage parameters.

2.3.2 Thin film fracture test

Both the linear amplitude sweep test and the monotonic fracture test are typically conducted
on bulk specimens of asphalt binders in shear. However, asphalt binders within asphalt
mixtures are confined between relatively rigid aggregate particles. This confinement results
in very high hydrostatic stresses and significantly improved tensile strength, similar to thin
films of adhesives between rigid substrates. As a result, it is important to consider the stress
state of the asphalt binder when investigating fatigue or fracture properties. The thin film
fracture test is a direct tension test that is conducted on a thin film of asphalt binder. In
this test, a constant rate (monotonic) displacement is applied in direct tension on a thin film
of asphalt binder between two metal substrates until failure. The test can be conducted at
different rates of loading and the load versus deformation curve can be used to characterize
the inherent fracture resistance of the asphalt binder. This test can also be conducted using
cyclic loading to simulate fatigue cracking in the asphalt binder specimen.

2.3.3 Binder-glass bead mortar test

The stress state that a binder experiences in a mixture can be simulated in a mortar speci-
men, i.e., binder mixed with sand sized and finer aggregates. However, it is also important
to avoid the influence of aggregates in evaluating the inherent fracture resistance of as-
phalt binders. This is especially true if a test is to serve the purpose of a binder purchase
specification in future. Therefore, this test utilizes a standard material such as glass beads
to fabricate the mortar specimen. In a typical test, a mortar specimen is fabricated using

9



a mixture of asphalt binder and glass beads of various sizes. The specimen uses glass
beads of sizes 1mm, 0.5mm, and 0.1mm following close to dense graded line. The test can
be conducted by applying either a monotonically increasing shear stress or cyclic loading
with a constant shear stress or strain amplitude. Since the fatigue damage that occurs in a
composite can be treated to be distributed over space, the viscoelastic continuum damage
(VECD) principles can be used to extract the true fatigue characteristics of the specimen
irrespective of the rate and mode of loading (continuous or cyclic). This theory has been
successfully used in another study in which the test specimen was subject to cyclic torsion
at different stress or strain amplitudes (Motamed et al., 2013).

2.3.4 Fine aggregate mortar test

This test is the same as the binder-glass bead mortar test, except that the glass beads are
replaced with the mineral aggregates corresponding to a specific asphalt mixture (Kim
et al., 2003, 2006; Palvadi et al., 2012; Karki et al., 2014a).

2.4 THEORETICAL BACKGROUND OF ANALYSIS METHOD

One of the challenges with conducting fatigue tests using binder samples with different
levels of aging is that the stiffness of these binders varies significantly with aging. As a
result, it is sometimes impractical to use the same level of loading conditions to conduct
tests on a suite of materials with very different stiffness. For example, a high stress am-
plitude in a cyclic fatigue test would result in an extremely short fatigue life for the soft
unaged or only short-term aged binder. On the other hand a low stress amplitude in a cyclic
fatigue test would result in extremely high fatigue life for the stiff long-term aged binder
(and an unrealistically long test duration). Conducting tests at different stress amplitudes
would not allow for a direct comparison between the different materials. Similarly, tests
conducted using a constant strain amplitude as an input would yield fatigue lives that are
not an accurate representation of the material response under traffic loading. For example,
under a given traffic load the stiffer binder would experience smaller strains compared to
the softer binder. Therefore, for this study it was important to adopt a method of analysis to
compare the damage resistance of different asphalt binders that is independent of the mode
and amplitude of loading. Based on a review of the literature the viscoelastic continuum
damage method was considered to be an appropriate analytical tool to evaluate the test data.
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2.4.1 Linear viscoelastic constitutive model

The response of asphalt materials (asphalt cements and composites) differs with applied
stress and strain rates, magnitudes and temperatures. Viscoelastic continuum damage
(VECD) mechanics is extensively used to model the damage response of asphalt mate-
rials in a form that extracts the damage resistance of the material that is independent of the
mode and amplitude of loading. This section presents the necessary background required
to understand linear viscoelastic responses, the use of correspondence principles and work
potential theory as required for VECD damage and healing models.

The linear viscoelastic property of an asphalt material represents its time- or rate-
dependent mechanical response at low stresses or strains that does not induce damage to
the material. In torsional shear mode of loading, the physical stress (τ) and the physi-
cal strain (γ) at time t are expressed in terms of convolution integrals, wherein G(t) and
J(t) represent relaxation modulus and creep compliance in shear, and ξ represent the time
variable.

τ(t) =
∫ t

0
G(t−ξ , t)

∂γ(ξ )

∂ξ
dξ (2.1)

γ(t) =
∫ t

0
J (t−ξ , t)

∂τ(ξ )

∂ξ
dξ (2.2)

As can be seen in these relations (equations 2.2 and 2.1) , one needs to know the re-
laxation or creep compliance of the material to quantify its stress or strain response. Re-
searchers use mechanical (e.g. Maxwell, Wiechert, Kelvin, etc.) or phenomenological
models (e.g. power law) to describe the relaxation or creep compliance of the material.
Models that describe linear viscoelastic response of asphalt materials typically follow the
time-temperature superposition principles, thereby facilitating computation of combined
responses due to different loading and temperature conditions. The specific models that
adequately described the linear viscoelastic properties of fine aggregate matrices used in
this study are provided in corresponding sections of this report.

2.4.2 Schapery’s Extended Correspondence Principles

Typical boundary value problems with viscoelastic materials can be solved by using Laplace
transform or simple correspondence principles with the solutions for similar problems for
linear elastic solids. However, such transformations are not applicable to problems wherein
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the traction or displacement boundary conditions change with time (e.g. crack growth or
crack closing). To address such situations, Graham and Sabin (1973) presented the elastic-
viscoelastic correspondence principles that Schapery (1984b) extended to solve viscoelastic
problems in which the traction and displacement boundaries remain intact (CP-I) or change
(CP-II and CP-III) with time. In summary, these extended principles transform the time-
dependent stresses and strains in viscoelastic media into the time-independent stresses and
strains of an equivalent or reference elastic material, and solve the viscoelastic problems
in a pseudo-elastic domain. Schapery categorically provided the generalized expressions
for such transformations in an earlier study (Schapery, 1984a). Researchers have applied
Schapery’s extended correspondence principles to describe asphalt material traction bound-
ary value problems such as crack growth (Park and Schapery, 1997), fatigue damage (Lee
and Kim, 1998; Park et al., 1996; Kim et al., 2003, 2006) and healing (Karki et al., 2014b)
among many others.

In torsional shear tests performed for this part of the study, the selected modified cor-
respondence principle, CP-II (Schapery, 1984a, 1989) transforms the viscoelastic shear
variables into the pseudo-elastic variables (denoted by superscript, R) as follows:

τ
R ≡ τ (2.3)

γ
R ≡ 1

GR

∫ t

0
G(t−ξ , t)

∂γ(ξ )

∂ξ
dξ (2.4)

The quantity, GR used in these transformation expressions represents an arbitrary mod-
ulus in the transformed space, and is taken as unity in this study. The following inverse
relations can transform the pseudo shear strain and pseudo shear stress back into time-
dependent shear stress and shear strain (Kim and Little, 1990):

τ ≡ τ
R (2.5)

γ ≡ GR
∫ t

0
J (t−ξ , t)

∂γR(ξ )

∂ξ
dξ (2.6)

Using the extended correspondence principles, CP-II (Schapery, 1984a), and the steady
state stress condition (Ferry, 1980; Tschoegl, 1989) for a material subjected to sinusoidal
load, the amplitudes of pseudo shear stress and pseudo shear strain at the kth load cycle can
be given by these simplified relations (Underwood et al., 2010):

12



τ
R
oc,k ≡

β +1
2

τpp,k (2.7)

γ
R
oc,k ≡

β +1
2

(
γpp,kG∗LV E

GR

)
(2.8)

The subscript oc refers to the peak amplitude of pseudo shear stress or the peak am-
plitude of pseudo shear strain that are responsible for fatigue cracking in the kth shear
load cycle; the subscript pp refers to corresponding peak-to-peak magnitude of viscoelas-
tic shear stress and shear strain as shown in Figure 2.1. The notation, G∗LV E in the pseudo
shear strain definition refers to the linear viscoelastic dynamic shear modulus of the given
material that is measured by applying a small level of strain or stress within the linear vis-
coelastic range of the material. Similarly, the parameter β refers to a correction factor to
account for the portion of the stress-strain history that is responsible for crack growth in
a given cycle (Underwood et al., 2010). The concept of such correction was also used in
some earlier studies related to uniaxial load in which the researchers used half (Daniel,
2001) or quarter (Daniel and Kim, 2002) of stress-strain history. In a torsional shear test,
the full portion of each load cycle is responsible for shear damage in the material. Due to
symmetry, β = 0 is used to calculate the pseudo shear strain that is responsible for damage
accumulation in each semi-cycle.

Figure 2.1. Schematic of stress - strain relationship in viscoelastic and pseudo-elastic
domains

In a stress-controlled cyclic shear test, the shear stress amplitude divided by the shear
strain amplitude at a given steady state load cycle yields the dynamic shear modulus of
the material. In the pseudo-elastic realm, the secant slope of pseudo stress-strain curve is
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defined as the pseudo-stiffness of the material corresponding to that cycle:

CR
s,k(Ss)≡

τR
oc,k

γR
oc,k

(2.9)

The value of pseudo-stiffness depends on the change in the internal state of the material
(represented by Ss), and therefore is denoted as CR

s,k(Ss) wherein the subscript s refers to the
shear mode of loading. A more robust method to compute pseudo-stiffness requires time-
integration on the stress-strain history without assuming the steady state definition. Other
researchers (Underwood et al., 2010) have also proposed a mixed use of time-integration
to determine pseudo-stiffness based on transient effects. They have attributed this need
to the transient effects due to the sudden application of damage-inducing load from zero.
However, the sinusoidal shear tests conduced for this work resulted in very similar stress
and strain amplitudes above and below a zero-mean axis in a given cycle, following a
steady state response. Therefore, for the purpose of this study, the simplified definition of
pseudo-stiffness as defined earlier was used, wherein a correction factor (I) accounts for
sample-to-sample variability.

CR
s,k(S) =

1
I

G∗k
G∗LV E

GR (2.10)

2.4.3 Thermodynamic-based Work Potential Theory

Researchers have used thermodynamics-based work potential theory to describe the struc-
tural changes due to loading and unloading (Schapery, 1990). This theory relates structural
changes with the change in a set of internal state variables or ISVs for short. The change
in this variable is associated with a change in a work potential that describes the energy
released or absorbed by the material to manifest that change. According to this theory, the
sum of work potentials associated with each internal state variable and the elastic strain en-
ergy density constitute the total work potential of the material. Work potential theory states
that the thermodynamic force (or stress) required to bring a change in material structure via
a specific damage or failure mechanism is equal to the rate of change of dissipated strain
energy density with respect to the displacement (or strain) associated with corresponding
damage mechanism. In a pseudo-elastic domain, the relationship of thermodynamic pseudo
force or pseudo shear stress, τR with the pseudo strain energy in shear, W R

s , and the pseudo
shear strain, γR is given by (Schapery, 1990):
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τ
R =

∂W R
s

∂γR (2.11)

Similarly, assuming isothermal condition, the work potential theory also expresses
pseudo shear stress and pseudo shear strain energy, W R

s as functions of the internal state
variable for damage, Ss and the shear strain, γR (or angular displacement) associated with
shear damage:

τ
R
s = τ

R
s (γ

R,Ss) (2.12)

W R
s =W R

s (γR,Ss) (2.13)

Based on these theories, the pseudo shear stress and pseudo shear strain energy re-
sponsible for the shear damage in each half of the kth load cycle (see Figure 2.1) can be
expressed as:

τ
R
oc,k = ICR

s,kγ
R
oc,k (2.14)

W R
s,k =

I
2

CR
s,k
(
γ

R
oc,k
)2

(2.15)

2.4.4 Rate-type Damage Evolution Law

A model based on continuum damage mechanics is used to quantify damage in terms of
an internal state variable (Ss) assuming that the body under damage is a homogeneous
continuum that is much larger than the flaw sizes. For time-dependent materials, Schapery
(1990) proposed the rate of damage evolution as the α th power function of change in pseudo
strain energy in shear with respect to the internal state variable for damage, wherein the
slope α refers to a material damage evolution rate parameter. Mathematically, the power
law form for the damage evolution rate can be expressed as:

dSs

dt
=

(
−∂W R

s
∂Ss

)α

(2.16)

This function is analogous to the crack growth law in elastic materials (Paris and Er-
dogan, 1963) and is based on the fact that crack growth obeys a power relation in local
Jv-integral (Schapery, 1984b). By using the relations from the work potential theory and
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applying the chain rule of derivatives, the aforementioned damage evolution law can be
simplified to quantify total damage at the Nth cycle of shear load (Park et al., 1996):

Ss,N ≈ Ss,0 +
N

∑
k=1

∆Ss,k ≈ Ss,0 +
N

∑
k=1

[(
−I
(
∆CR

s,k
)(

γ
R
oc,k
)2
) α

1+α

(∆tk)
1

1+α

]
(2.17)

In this expression, Ss,0 is the internal state variable for shear damage at the beginning
of loading. The incremental term in the above relation signifies the total damage due to a
complete load cycle (see Figure 2.1 for the pseudo shear strain energy formulation). For
a specimen without any pre-existing damage, the initial damage value can be set to zero,
as is the case in this study. The internal state variable for shear damage Ss starts with
the lowest value (set to zero in the undamaged state) and increases with time, signifying
the progressive damage growth due to shear, while the pseudo-stiffness CR

s (Ss) starts with
its highest stiffness value (unity after normalization) and keeps decreasing with time. The
VECD model has been widely used in describing deterioration of asphalt composites during
uniaxial monotonic tests and uniaxial cyclic tests but only occasionally in cyclic shear tests.
Kim et al. (2003) used modified correspondence principles and work potential theory to
study damage and healing in shear mode, but only recent studies Karki et al. (2014b);
Palvadi et al. (2012) utilized the damage evolution law in asphalt composites under shear.
Since the damage characteristic curve is independent of the mode and amplitude of loading,
it can also be used to predict the number of cycles required to degrade an asphalt material to
a certain level of stiffness (or pseudo-stiffness) or to accumulate a certain degree of damage
when subjected to any arbitrary loading condition. For example, the number of load cycles
to reduce the stiffness ∆C and corresponding increase in damage ∆S when subjected to a
strain amplitude γR

pp,k is given by:

N ≈ f
N

∑
k=1

[(
−I
(
∆CR

s,k
)(

γ
R
oc,k
)2
)−α (

∆Ss,k
)1+α

]
(2.18)

2.5 RESEARCH APPROACH

The focus of this research was to investigate the effect of asphalt binder oxidation and the
use of RAP on the fatigue performance. To this end, fatigue-cracking characteristics of an
asphalt binder were measured at different levels of aging. This research used two common
aging devices to simulate aging in the laboratory: rolling thin film oven (RTFO), and pres-
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sure aging vessel (PAV). The RTFO simulates short-term aging due to construction, and the
PAV simulates the long-term aging due to construction and service. Furthermore, in order
to simulate extended aging, the PAV-aged asphalt binder was further aged using PAV for a
second and third times. Finally to simulate a HMA containing RAP, the RTFO-aged binder
was mixed with the double PAV-aged binder at two different proportions: 25 and 50 percent
by mass. To measure the fatigue and fracture properties of the asphalt binder aged at differ-
ent conditions, two mechanical tests were conducted: glass bead standardized composite
and thin film fracture tests. The test methods proposed here were based on the recognition
that the stress state of the asphalt binder within the mixture has a significant influence on
the mode of failure. The test results were analyzed using viscoelastic continuum damage
(VECD) mechanics. This analysis method is robust and allows comparing the fatigue test
results conducted at different loading condition.
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CHAPTER 3. MATERIALS

3.1 MATERIAL SELECTION AND PREPARATION

An asphalt binder with performance grade of PG 67-27, following the Superpave perfor-
mance grading system, was selected for this study. To investigate the effect of aging on the
fatigue and fracture performance of asphaltic materials, this binder was aged to different
levels in the laboratory. First, a rolling thin film oven (RTFO) was used to simulate short-
term aging that occurs during mixture production and placement. Then, a pressure-aging
vessel (PAV) was used to simulate the long-term aging due to weathering and oxidation.
The RTFO aging was carried as per ASTM D2872, where 35 grams of the binder was
poured into the RTFO bottles, and aged in the RTFO for 85 minutes. The RTFO aged
binder residues were further aged in the PAV to simulate long-term aging of the binders.
The PAV aging process was carried out as per ASTM D6521, where 50 grams of the RTFO
residue was poured into the PAV pans and aged in the PAV for 20 hours at the temperature
of 100◦C (212◦F). In order to investigate the effect of extended aging the residue recovered
from the PAV was further aged using PAV for a second and third times. Figure 3.1 shows
the aging procedure and stages used in this study.

Furthermore, one of the objectives of this study was also to investigate the effect of
the use of reclaimed asphalt on the fatigue and fracture properties of asphaltic materials.
For this purpose, the PAV2 aged binder representing the reclaimed binder was mixed with
RTFO aged binder representing the new binder in construction that experienced short-term
aging due to construction. Also the simulated reclaimed asphalt (PAV2 aged binder) was
mixed with RTFO aged binder at two different dosages: 25 and 50 percent. To investi-
gate the effect of aging on the fracture and fatigue properties of asphaltic materials, this
research will used two different test methods: thin film fracture test and fatigue test using
a standardized composite including glass beads of different sizes and asphalt binder. The
following two sections describe the sample preparation for these test methods.

3.2 SPECIMEN FABRICATION FOR STANDARDIZED COMPOSITE TEST

Standardized composite test geometry is composed of asphalt binder and glass beads of
different sizes. Three different sizes of the glass beads were used to create a gradation that
closely followed the maximum density line on a 0.5 power chart (Figure 3.2). Figure 3.2
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Figure 3.1. Aging procedure and stages used in this study.

illustrates the size and proportion of each glass bead size. The optimal binder content was
determined by trial and error. Mixes were prepared and compacted using several different
binder contents. A preliminary study conducted by the authors showed that the specimens
prepared using 10% binder by weight of the glass beads would be optimal. Compacted
specimens with low asphalt binder contents were found to be too brittle and susceptible
to breakage during handling and specimen preparation. On the other hand, specimens
with high asphalt binder contents were found to have problems related to flushing and
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deformation. A more thorough investigation of the binder content and its influence on the
stress-state when used as a matrix with glass beads as an inclusion was beyond the scope
of this study and will be investigated in our future work.

Figure 3.2. Gradation of glass beads used to produce specimens for standardized
composite test

To prepare the asphalt binder-glass bead mixture, the following procedure was used.
The asphalt binder was heated to 150◦C in a 100 g can enclosed in a temperature con-
trolled jacket. A thermocouple was used to constantly monitor the temperature of the
binder throughout the process. The appropriate amount of glass beads were weighed in
advance and oven dried. Once the binder reached the target temperature, the glass beads
were slowly added to the binder while constantly stirring the mix in the temperature jacket.
The mixing was done by adding glass beads of each size at a time, starting from the small-
est to the largest size (0.1 mm, 0.5 mm and 1 mm). The beads and the asphalt binder were
thoroughly mixed manually until a homogenous mix was obtained. Figure 3.3 illustrates
the mixing of the glass beads with the asphalt binder.

After mixing, the contents were transferred to a stainless steel mold to compact and
fabricate test specimens. A two-piece stainless steel mold was fabricated to compact and
prepare the test specimens. The mold had a total height of 75 mm and internal diameter of
12.5 mm. The mold also had a stop at the bottom and the compaction rod at the top was
designed to allow dropping a fixed weight of 335 g from a fixed height of 75 mm. The
two pieces of the mold were held together using two pipe clamps. Figure 3.4 shows the
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Figure 3.3. Manually mixing glass beads with the asphalt binder to prepare a ho-
mogenous mixture

manufactured mold and its components. A total of three molds were fabricated to be able
to fabricate three test specimens using the loose mix at the same time and minimize the
amount of variability and reheating required.

Figure 3.4. Manufactured mold assembly for compaction

In order to prepare the molds for compaction, first the compaction rod and inside of the
stainless steel molds and were lubricated using a silicon lube spray. Then, the assembled
molds and compaction rod were heated to 150◦C in a convection oven. The silicon spray
was used to ease removal of the sample from the mold. When the loose mix became ready,

22



the molds were removed from the oven one at a time. The loose mix was poured in the mold
about two-thirds of the way full. The loose mix was then compacted using the compaction
rod and dropping the weight from the fixed height for 25 times. Figure 3.5 illustrates these
two steps.

Figure 3.5. Glass bead mixture being poured into the mold and compacted using the
rod and drop weight

It should be noted that the previous study by the authors (Motamed et al., 2013) on a
similar test geometry revealed that compacting the specimen in two or three layers resulted
in weak interfaces. This resulted in the failure of the test specimens along a horizontal
planes associated with these weak interfaces. Therefore, the authors decided to compact
the specimens in a single layer. Furthermore, the authors conducted several trials to deter-
mine the number of drops required to compact the specimen. Based on these trials it was
determined that the specimen height did not change after 25 drops. After compaction, the
specimens were allowed to cool down to the room temperature in the molds for 24 hours.
After this time the clamps holding the two piece mold were removed. Then, the bottom
of the mold was removed and the two halves of cylindrical mold were gently opened to
extract the specimen. In some cases the specimens remained adhered to the mold. In such
cases, the surface of the mold was gently warmed to facilitate the separation. Once the
test specimen was obtained from the mold, the ends of the specimen were glued to metal
end caps using high strength epoxy. Allowing the high strength epoxy to set completely,
the test specimen was mounted onto a DSR for fatigue testing in shear. Figure 3.6 shows
the test specimen and the tests setup in DSR. A total of six specimens were fabricated and
tested for each of the aging conditions.
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Figure 3.6. A test specimen and the test setup in Dynamic Shear Rheometer

3.3 SPECIMEN FABRICATION FOR THIN FILM FRACTURE TEST

To conduct thin film fracture tests, a circular poker-chip test geometry was used. Circular
poker-chip test geometry is disc-shaped specimens between two circular metal specimen
holders. Circular shape specimen were used to reduce singular corners. Metal discs were
manufactured with diameter of 14.6 mm. Poker-chip test specimens with the height of
roughly 300 micrometer were fabricated using the following procedure. First the end plates
were clamped to the tension-compression dynamic mechanical analyzer DMA, and the
device was conditioned for a duration of one hour at the testing temperature. After the
instrument reached steady state, the zero gap was established. Then the asphalt binder
was placed on the lower metal plate and the temperature was raised to 100◦C. Raising the
temperature to 100◦C had several advantages:

• it allowed the asphalt binder to spread uniformly,

• it released any trapped air bubbles in the asphalt binder,

• it promoted bonding between the binder and the metal plates,
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• it minimized the effect of physical hardening on the test results.

After holding the temperature at 100◦C for 5 minutes, the temperature was decreased
to 60◦C, which seems to be an appropriate temperature for squeezing asphalt binders. Fi-
nally, thin films with the height of roughly 300 micrometer were prepared by lowering the
upper plate and squeezing the asphalt binder between two metal end plates. To avoid any
thermal stresses in specimens, first the upper plate was approximately lowered to a gap of
320 micrometer. Then, as the temperature was lowered to the testing temperature, the ma-
terial and system were allowed to shrink by maintaining zero normal force in the specimen.
It took almost forty minutes to reach the thermal and concomitant shrinkage equilibrium.
Therefore, specimens were conditioned for one hour at the testing temperature before trim-
ming the edge of the specimen. Trimming was followed by another hour of conditioning
before the displacement controlled test began. Figure 3.7 illustrates the thin film fracture
test set-up.

Figure 3.7. Thin film fracture test set-up
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CHAPTER 4. TEST METHODS, ANALYSIS AND RESULTS

This research investigates the effect of aging on the fracture and fatigue properties of as-
phaltic materials. To this end, the authors used two different test methods: thin film frac-
ture test and fatigue test using a standardized composite. The following two subsections
describe the test methods used in this study and the analyses conducted.

4.1 STANDARDIZED COMPOSITE TEST

A Dynamic Shear Rheometer DSR (Model TA AR2000Ex) was used to measure the me-
chanical response of the glass bead composites when subjected to different shear stress
levels. The two main objectives of the tests conducted using the DSR were to obtain the
linear viscoelastic and fatigue properties of the glass bead specimens subjected to torsion.
The following are some more details pertaining to the tests conducted using a DSR. All
tests described in this section were conducted at an intermediate temperature of 20◦C. The
test specimens were mounted in the DSR and were conditioned at the test temperature for
at least 1 hour to ensure that they reached thermal equilibrium.

4.1.1 Linear viscoelastic properties

All test specimens were subjected to a creep-recovery test as well as a cyclic test to obtain
the linear viscoelastic properties at 20◦C. The following sequence of loads was used to
obtain the linear viscoelastic properties. First, a set of creep and recovery tests at different
stress levels were conducted to ensure that standardized composites behaved linearly in the
stress levels used for this test. The creep part of the test was three seconds long. This
loading time was long enough to collect the time dependent response of material for the
time window of interest. The selected loading time was much greater than the rise time
of the instrument, which is on the order of 10−4 seconds. This minimized the transient
effects on the measured data. On the other hand, the loading time was not too long to risk
damaging the material. The recovery time of 200 seconds was considered long enough
to achieve significant if not complete recovery. Three different stress levels were selected
to obtain the material response: 5 kPa, 10 kPa, and 20 kPa. Creep and recovery at each
stress level were repeated twice before proceeding to the next stress. Results from the
second repeat were compared to the first repeat in order to detect any permanent change or
damage to the material during the loading period. Figure 4.1 shows the creep and recovery
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test results for PAV3 aged binder at two different stress levels (the third stress level is not
shown for clarity). Using the measured strains γ(t) under constant shear stress τ0 , the
creep compliance J(t) was calculated at different stress levels:

J(t) =
γ(t)
τ0

(4.1)

Figure 4.2 shows the measured creep compliance for the PAV3 aged binder at three dif-
ferent stress levels. As can be seen, the creep compliance at different stress levels remains
the same and does not change with stress level. This indicates that material is behaving
linearly at these stress levels and there is no damage or change in materials due to loading.

Figure 4.1. Creep and recovery test results for PAV3 aged binder under 5 and 10 kPa
stress levels

Figure 4.2. Measured creep compliance for PAV-3 aged binder under different stress
levels at 20◦C

Furthermore, it was observed by the authors that a power-law form for the compliance
fits well to the measured creep and recovery data:
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J(t) = J0 + J1tm (4.2)

where J0, J1, and m are material constants; and t is the time in seconds. Due to higher
sensitivity of these constants to the test duration in creep, these material constants were
obtained using only the recovery test data (Hiel et al., 1984). Figure 4.3 compares the
measured creep response of PAV3 aged binder with the estimated creep response for a
stress level of 5 kPa. The material response was estimated using Boltzmann Integral and
the power law equation calibrated using the recovery data. As can be observed, the power
law equation is adequate to model the linear behavior of the composite.

Figure 4.3. Power law estimation of the creep response for PAV3 aged binder under a
constant load of 5 kPa at 20◦C

Figures 4.4 and 4.5 compares the J1 and m values for the different mixes used in this
study. The values of these two parameters indicate how much a material’s response is time-
dependent. As can be observed, both m value and J1 reduced with aging. This indicates
that as the material goes through aging, it becomes more stiff and less time dependent.
Engineers typically regard an increase in stiffness and reduced ability to relax as the reasons
for crack nucleation and fatigue failure. After creep and recovery, to obtain the linear
viscoelastic properties of standardized composites in frequency domain, the test specimen
was subjected to a sinusoidal load with a frequency of 10 Hz and stress amplitudes of 10 and
20 kPa. The complex modulus and phase angle were recorded only using the last few cycles
at each stress level to minimize the influence of the initial transients. It should be noted that
although the complex modulus for the complete frequency spectra can be calculated using
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the principle of superposition with the data from the creep-recovery curve, this test was
conducted to provide a more robust estimation of the linear viscoelastic properties. Figures
4.6 and 4.7 compare the linear dynamic shear modulus G∗ and phase angle δ of the asphalt
binder at different levels of aging. The test results in frequency domain also demonstrate
that oxidative aging makes the asphaltic materials more stiff (increase in dynamic shear
modulus) and less time dependent (decrease in phase angle).

Figure 4.4. Coefficient of the time-dependent term in the power law equation or J1 for
different levels of aging at 20◦C

As discussed in the previous section, current standard for characterizing asphalt binder
considers the G∗Sinδ as an indicator of the asphalt binders’ resistance to fatigue crack-
ing. Not withstanding, that this parameter is intended for use with asphalt binders, it was
also calculated for the standardized composite specimens used in this study. Figure 4.8
compares the G∗Sinδ parameter for different levels of aging. The observation that can be
made from these results is that the G∗Sinδ parameter was similar for different levels of
aging of tested asphalt binder. This suggests that although the dynamic modulus increases
with oxidization, the viscous component of the dynamic modulus (G′′ = G∗Sinδ ) remains
approximately unchanged. As discussed previously, either the creep compliance (time do-
main) or the complex modulus from cyclic tests (frequency domain) can be used to estimate
the linear viscoelastic properties of the test specimens. In this case, we conducted both tests
to ensure the robustness of the linear viscoelastic properties that will be subsequently used
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Figure 4.5. The exponent in the power law equation or m-value for different levels of
aging at 20◦C

Figure 4.6. Linear viscoelastic dynamic shear modulus for different levels of aging at
10Hz and 20◦C

for damage analysis.
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Figure 4.7. Linear viscoelastic phase angle for different levels of aging at 10Hz and
20◦C

Figure 4.8. Fatigue parameter (G∗Sinδ ) for different levels of aging at 20◦C

4.1.2 Fatigue behavior

To evaluate the fatigue cracking resistance of the asphalt binder at different levels of aging,
cyclic tests at different stress levels were conducted. The frequency of all these tests was
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10 Hz and testing temperature was 20◦C. The stress amplitude ranged from 180 to 330
kPa. The reason for using different stress amplitudes was to collect an appropriate amount
of data in an acceptable amount of time. Using a high stress level will result in specimen
failure in the first few cycles. On the other hand, using a low stress level can lead to testing
times that are not practical. The termination criteria for fatigue test were either the stiffness
reaching 50 % of the initial dynamic modulus (the modulus at the beginning of the fatigue
test) or the maximum of 40 hours. Figure 4.9 illustrates typical fatigue test results for PAV3
aged asphalt binder at 330 kPa stress level.

Figure 4.9. Fatigue test results for PAV3 aged binder at 330 kPa, 20◦C, and 10 Hz

In order to compare the fatigue test results for the asphalt binder at different levels
of aging under the same loading condition, the VECD method to evaluate damage was
employed. Using this approach (Equation 2.17), the damage characteristic curve for each
aging condition was obtained. Figure 4.10 demonstrates a typical damage evolution curve
(C vs S) obtained for PAV3 aged binder.

Then, the authors used the damage evolution curves of the material at different levels of
aging and Equation 2.18 to calculate and compare the fatigue life of these materials under
a reference loading condition. The reference loading condition was considered to be the
lowest stress level used in this study for fatigue testing, i.e, 180 kPa. Figure 4.11 compares
the fatigue life of the binder material at different levels of aging. It should be noted here that
the fatigue life is the number of loading cycles required to reach to 50% of initial modulus.
As can be seen, aging has resulted in improved fatigue performance of the asphalt binder.
However, this observation requires further investigation using different modes of loading
and testing conditions.
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Figure 4.10. Typical damage evolution curve (C vs S) obtained for PAV3 aged binder

Figure 4.11. Fatigue life (cycles required for reaching to 50% of initial modulus) for
different levels of aging

4.2 THIN FILM FRACTURE TEST

The thin film fracture test was conducted to measure the fracture properties of the as-
phalt binder at different levels of aging. In order to conduct the fracture test, a tension-
compression dynamic mechanical analyzer (DMA- Model Instron ElectroPuls E1000) was
used. These tests were also conducted at an intermediate temperature of 20◦C, similar to
the standardized composite test. To ensure the same testing temperature inside the testing
device, dummy specimens with a thermocouple in the middle were used for calibration of
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the temperature controller. As described earlier, the test specimens were fabricated in the
DMA and were conditioned at the test temperature for at least 1 hour to ensure that the test
specimens reached thermal equilibrium. All the fracture tests were conducted by applying
a displacement-controlled monotonic loading with the rate of 1 micrometer/sec. Measur-
ing the applied displacement and generated force during the test, the authors calculated the
nominal stress and strain experienced by specimens. Figure 4.12 illustrates the typical test
results from the monotonic fracture test on PAV aged binder for three replicates. Figure
4.13 compares the fractures properties of tested asphalt binder at different level of aging.
Note that this figure illustrates the average response for three to four replicates with the
exception of the PAV3 binder. The two replicates for the PAV3 binder are illustrated to
demonstrate the high variability and different modes of failure that were experienced with
this particular binder.

Figure 4.12. Monotonic fracture test results for PAV aged binder at the rate of 1mi-
crometer/second

Using these results, maximum tensile stress and fracture energy of the asphalt binders
were calculated. The fracture energy was calculated as the area under the stress-strain
curve for the strain ranging from zero (start of the test) to the strain at which the yielding
occurs (peak load). Figures 4.14 and 4.15 summarize and compare the maximum tensile
stress and the fracture energy of the tested asphalt binder at different levels of aging. As
can be seen, both maximum tensile stress and fracture energy increase until some level
of aging. Aging beyond the level identified as PAV1 does not improve these parameters.
A similar trend was observed for the strain at which yielding (maximum tensile stress)
occurs (Figure 4.13). In contrast, the strain at which the physical separation of specimens
occur continuously decreases with aging. The fracture and fatigue test results obtained for
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Figure 4.13. Comparison of the fracture behavior of the tested asphalt binder at dif-
ferent levels of aging

mixtures that simulate RAP mixes demonstrated that the performance of these mixtures are
somewhere in between that of their components.

Figure 4.14. Comparison of the maximum tensile stress for different levels of binder
aging

36



Figure 4.15. Comparison of the fracture energy for different levels of binder aging
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CHAPTER 5. SUMMARY OF FINDINGS

This study investigated the effect of asphalt binder oxidation on its fracture properties and
fatigue cracking performance. To this end, fatigue cracking resistance and fracture prop-
erties of a selected asphalt binder were measured at different levels of aging. The fatigue
test was conducted using a standardized glass bead composite under cyclic load, and the
fracture test was conducted using a poker chip test geometry under monotonic loading.

The following are some of the main findings from this study:

1. Creep - recovery and cyclic loads were used at low stress levels in shear to determine
the linear viscoelastic properties of glass bead composites at different levels of aging.
As expected, the results showed that aging causes the asphalt binder and concomitant
composite to become more stiff and relatively less time dependent.

2. Cyclic loads were applied at low stress levels in shear with the glass bead compos-
ite to compute the fatigue parameter introduced by SHRP for asphalt binder, i.e.,
G∗Sinδ , which also represents the loss modulus or viscous component of the asphalt
binder. As evidenced by Figure 4.8, the viscous component of dynamic modulus
does not change significantly with aging.

3. The results from fatigue test using glass bead composite subjected to stress controlled
cyclic load, clearly demonstrated that the fatigue cracking resistance of asphalt binder
increased with aging.

4. The results from thin film fracture test illustrate that both maximum tensile stress
and fracture energy increase until some level of aging. Aging beyond PAV1 did not
significantly improve these parameters. Interestingly, a similar trend was observed
for the strain at which yielding (maximum tensile stress) occurs. However, as can be
clearly seen in Figure 4.13, the strain at which the physical separation of specimens
occur continuously decreases with aging.

This study also investigated the effect of using reclaimed asphalt pavement on the me-
chanical properties and performance of newly constructed roads. To simulate the binder in
a HMA containing RAP, the RTFO-aged (short-term aged) binder was mixed with the dou-
ble PAV-aged (long-term aged) binder in two different percentages. The amount of RAP
used herein represented the typical percentage use of RAP. The results demonstrate that the
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mechanical properties and performance of the mix containing RAP reflect a composite ef-
fect of its components. In summary, the findings from this work suggest that although aged
binder and concomitant RAP mixes may have higher stiffness due to aging, these materials
also tend to show an increased fracture and fatigue cracking resistance. Consequently, both
of these factors must be considered in order to fully optimize mix designs containing RAP
and maximize the use of these materials.

The scope of this study was limited and only one binder was used. It is recommended
for future work that these findings be further verified using different asphalt binders at
different aging and loading conditions. The authors recognize that the fatigue cracking
resistance was compared at similar levels of stress. In the context of traffic loading, it can
be argued that the pavement structure is always subjected to a certain level of stress (and not
deformation) that corresponds to the vehicle load and tire configuration. However, in the
context of thermal loads, the pavement structure experiences a certain level of strain that
corresponds to the temperature and coefficient of thermal expansion of the material. This
study only focused on the former and concluded that the aged binders typically had better
fatigue and fracture resistance at when subjected to similar levels of stress. It is equally
important that future studies extend this work to thermal fatigue and in-particular to the
performance of aged binders at low temperatures. However, for such future studies, it must
be recognized that both stiffness and strength of the material are important in dictating the
material performance.
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